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Abstract~Analytical and computational results are presented on the evolution of stresses and
displacements due to indentation from a normal point force on an elastic substrate whose Young's
modulus E varies as a function of depth, z, beneath the indented surface. With the exception of
variation of properties with depth, the material is assumed to be linearly elastic and locally isotropic.
Closed-form solutions are derived for several fixed values of the Poisson ratio, v, and variations in
Ewhich follow two prescribed functions of z: (I) a simple power law, E = Eoi', where 0 ~ k < I is
a non-dimensional exponent; (2) an exponential law, E = Eoe"', where Eo is Young's modulus at
the surface, C( < 0 denotes a hardened surface (e.g., graded ceramic coatings on metallic substrates)
and C( > 0 denotes a soft surface (e.g" modulus variations measured as a function of depth beneath
the earth's surface for solids and rocks). The analytical solutions are checked with detailed finite
element simulations. It is shown that, for the power law case, there exists a critical Poisson ratio,
v'" above which drastic changes occur in the stress distribution under the point load, Finite element
results reveal, however, that the response is relatively less sensitive to the variation of v (on either
side of va) than to the variation of E with depth. Applications of the present results are discussed,
wherever appropriate, to surface treatments of engineering structures, thick coatings, thin-film
multilayers for microelectronic devices, and settling of foundations in the context of soil mechanics
and rock mechanics. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

The stress and deformation fields in elastic solids subject to point loads have long been the
subject of considerable research, Fundamental solutions for the evolution of stresses and
displacements due to surface tractions in a homogeneous elastic half-space were presented
by Boussinesq (1885) and Love (1927). Comprehensive reviews can be found in Gladwell
(1980), Johnson (1985) and Hills et af. (1993),

A particular extension of this basic problem involves the study of indentation of
compositionally graded materials by point forces and other loading geometries (e,g., punch,
sphere, diamond pyramid indentor, etc.), and the penetration of geo-materials, such as soils
and rocks, where the elastic properties vary as a function of depth beneath the surface. This
topic has major applications in a wide variety of scientific and technological areas which
include:

• the synthesis of advanced coatings for structural components to guard against ther
mal and tribological damage,

• the probing of the local physical and mechanical properties of composite materials
by means of micro-indentation or nano-indentation with the objective of developing
micromechanical models for deformation.

• the estimation of the fracture properties of materials for the purpose of ranking
materials on the basis of their damage tolerance,

• structural porous materials with gradients in porosity, which are being considered as
candidates for wings and fuselages of manned and unmanned aerospace vehicles,

• penetration of potential armor materials (with compositionally graded layers) by
projectiles, and

• the development of geotechnical analyses for the settlement of foundations on deep
deposits of soils, clay, and rocks.

t Author to whom correspondence should be addressed.
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A number of current applications in engineering structural components, and micro
and opto-electronics involve compositionally graded materials (see, for example, Ilschner
and Cherradi, 1994; Suresh and Needleman, 1996). Carburization and nitriding of steels
on the surfaces of components subjected to repeated contact to impart enhancements in
hardness result in a gradient in carbon and nitrogen concentration beneath the surface.
Compositionally graded interfaces between metallic substrates and ceramic outer coatings
are being explored by recourse to a variety of well-established processing methods for the
purpose of minimizing internal stresses arising from thermal mismatch, improving the
interfacial bond strength, suppressing the onset of plastic flow, reducing the deleterious
effects of singularities at free edges, and increasing the thickness of ceramic coatings (e.g.,
Finot and Suresh, 1996). In thin-film semiconductor devices, graded interlayers are grown
by such methods as molecular beam epitaxy or chemical vapor deposition for the purpose
of controlling the population, distribution and kinetics of misfit and threading dislocations
in heteroepitaxial structures (Fitzgerald et al., 1992). An example is the thin-film trilayer
system comprising a compositionally graded layer of InxGa1_xAs which is sandwiched
between layers of In012G3.0.ggAs and GaAs.

In geomechanics, the variation of the elastic properties of soils, sands, clay and rocks
as a function of depth beneath the surface of the earth is known to have a strong effect on
the settlement and stability of foundations and retaining walls and on plate tectonics. For
example, there is experimental evidence which indicates that for soils, the values of Young's
modulus (E) vary with depth below the surface (z) as E = Eoi', where Eo is the modulus of
the homogeneous soil (k = 0) and 0 :::; k < 1; k = I denotes the so-called "Gibson soil".

Despite the large number of diverse applications, few general solutions to the problem
of indentation on compositionally graded elastic substrates have been attempted. Holl
(1940), Hruban (1958) and Lekhniskii (1962) considered the specific case of deformation
under a point load of an elastic half-space wherein the elastic modulus varies as a power
law function of depth from a value of zero at the indented surface. In that work, the radial
stress fields were constructed for the particular critical Poisson ratio v = Vcr = 1/(k+2).
This critical value of v comes as a requirement for the existence of radial stresses in the half
space, i.e., for the principal stresses to be focused at the site of application of the point
force. The general variation of the response due to point force for an arbitrary value of v
( # vcr) has not been addressed thus far.

Gibson (1967), Gibson et al. (1971, 1975), Brown and Gibson (1972), Awojobi and
Gibson (1973) and Calladine and Greenwood (1978) presented results for the displacement
and stresses of linearly non-homogeneous deep elastic strata, with a primary focus on the
settlement of foundations. Holl (1940) examined the power-law variation of Young's
modulus, E = Eoi', in the context of stress transmission in earth, for the particular case of
v = I/(k+ 2). Note that the cases analyzed by Holl correspond to the incompressible
homogeneous soil (k = 0, v = 0.5), and the Gibson soil (k = 1, v = 1/3). Mossakovski
(1958) and Rostovtsev and Khranevskaia (1971) considered the deformation of an elastic
substrate, with a power-law variation in Young's modulus under a compressive force
produced by a punch and a point force, respectively. Several of these previous studies were
incomplete or contained errors, and used particular values of the Poisson ratio.

Booker et al. (1985) studied the response of an elastic non-homogeneous half-space
subject to line and point loads as well as circular and strip loads. The results of Booker et
al. are specific to the case where the Poisson ratio of the substrate v = 0.25. A particular
restriction of all of the foregoing studies is that they pertain only to specific choices of v
which is assumed to be spatially invariant. This assumption, as shown later in the present
paper, can lead to incorrect descriptions of the stress and displacement fields in some cases.

The present work was undertaken with the objective of developing a fundamental
understanding of the micromechanics of indentation of a compositionally graded elastic
solid. Through a combination ofanalytical, computational and experimental investigations,
this work seeks to examine the force-depth relations, the depth-contact radius relations,
the radial distribution of contact pressure due to indentation, and other stress and defor
mation fields at the contacting surface due to a point force, a line force, as well as conical,
spherical, and punch indentors. The results of this work will be discussed in a series of
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related articles. This paper, Part I, presents the analytical and finite element results of the
indentation of a compositionally graded elastic medium by a point force, where several
different profiles of gradients in Young's modulus and Poisson ratio are considered to
address a wide variety of engineering applications.

2. PROBLEM FORMULATION

The present problem is to develop solutions for the fields created by a point force, P,
acting normally on the surface of a semi-infinite elastic solid, in the absence of body forces.
The coordinate system is attached at the point application of the force with the usual
conventions (shown in Figs 1 and 2). The material is assumed to be linearly elastic,
inhomogeneous and locally isotropic within the context of small strains and small rotations.
Within the elastic analysis, possible residual stresses simply superimpose on the present
results. Quasistatic analysis is undertaken. In most of the subsequent analysis, the Poisson
ratio, v, was kept constant with z to simplify the discussions (0 :;::; v < 1/2). In selected cases,
a Poisson ratio variation of the type, v = Voo - (v x - vo)e-z// was used, with Vo being the
Poisson ratio at the surface (z = 0), Voo the Poisson ratio far away from the free surface
(z -+ OC!), and I ~ 0 a characteristic length associated with the Poisson ratio decay. High
values of Poisson ratio (v -+ 0.5) correspond to situations of saturated soils (undrained
condition) or to the commencement of plasticity. A comprehensive study of the influence
of Poisson ratio was undertaken by systematically varying its average value.

Two classes of elastic inhomogeneity, pertinent to engineering materials and geo
mechanics, were examined. The inhomogeneity distributions were selected to represent
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Fig. I. The power law model. E = Ed' (0 ~ k < I).

p

Eo r

u

w

z
a<O a>O

a=O
Fig. 2. The exponential law model. E = Eoe"' (Eo> 0).
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general morphologies of the elastic modulus encountered in such problems, as well as to be
amenable to analytic or semi-analytic solutions.

• In the first group of model materials, the Young's modulus, E, depends on the depth,
z (see Fig. I) according to a simple power law, E = Ec/. Note that Eo has dimensions
of stress x length-k

• For decaying values of stresses with depth, the power exponent
must be constrained to be 0 ~ k < 1. This model adequately describes many dense
sand and clay earth deposits. At the surface the stiffness is very small; it, however,
increases continuously with depth.

• In the second group of model materials, Young's modulus varies with z according
to an exponential law, E = Eoe". In this formulation, Eo has ordinary dimensions of
stress, whereas rx has dimensions of length -I. Therefore, this inhomogeneity descrip
tion introduces a characteristic length to the problem, which is llrx when rx -=f. 0 (see
Fig. 2). A surface which is more compliant than the substrate is indicated by rx > 0,
whereas a stiffer surface is indicated by rx < O.

Let (r, z) be the axisymmetric polar coordinates for an elastic half space, z ~ 0, with
corresponding displacements (u, w). The circumferential displacement vanishes and all the
relevant functions are independent of the circumferential coordinate, 8. In the absence of
body forces, there are only two stress equilibrium equations:

The strains are related to the displacements as

(1)

u
Goe = -,

r
(2)

and the volumetric strain is

au u aw
0=-+-+-;:;-.ar r oz

(3)

Hook's law for an isotropic, compressible (v -=f. 1/2), inhomogeneous material is written
in terms of displacements as

{
aw v }

(Jzz=2p az+I-2v 0 , (4a)

(4b)

where p = EI[2(1 + v)] is the shear modulus which may generally depend on z.
Before closing this section, we point to the relevance of the choice of present model

material systems to both geomechanics and structural materials. The values of shear modu
lus, typical ofsandy soils and normally consolidated clay deposits, varies with depth beneath
the earth surface as (O'Neill and Dobry, 1980) p = 88440Kz0 5

, where K = 30-150 Pa m- 1/2
,

z is in m and p in Pa. For these cases, the Poisson ratio is v = 0.4. Various profiles of the
elastic modulus from actual geomechanical tests resemble the present models (e.g., Judd,
1964; Kezdi and Lazanyi, 1976; Dowding, 1978; Pariseau, 1984; Prakash, 1984; Pells,
1985; Bell et al., 1990). Examples of power law modulus variations can be found in the
Gault clay at Cambridge, U.K., as well as sandy soils and normally consolidated clay
deposits. Typical cases of linear (trapezoidal) elastic modulus distribution are London's
clay, chalk and Pliocene clays. Exponentially decreasing elastic modulus usually occurs in
glacial clays at Redcar, U.K., and the sensitive clay in Ottawa, Canada. Typical cases of



Indentations of solids~I 2361

exponentially increasing elastic modulus are glacial clays at Cowden and Garston, U.K.,
chalk at Luton, U.K., and Pliocene fine-grained clays. For structural engineering materials
comprising compositionally graded metal-ceramic layers, such as the Ni-aluminum oxide
graded multilayers which have been the model systems of a number of recent research
studies (e.g., Finot et al., 1994; and Suresh and Needleman, 1996), the variation ofYoung's
modulus with depth can be well approximated by E = 84.9z0216

, with z in J.tm and E in GPa
(with the free surface taken from the soft region, i.e., pure Ni). The Poisson ratio is assumed
to be v = 0.3 everywhere in the composite. The same material, but with the free surface
taken from the hard region (pure A120 3) can be well approximated by E = 380e-0000332z,

with z in J.tm and E in GPa.

3. ANALYTICAL RESULTS

3.1. The power law case: E = EoZk

3.1.1. The point force problem with radial fields. As has been found earlier by Holl
(1940), Hruban (1958) and Lekhniskii (1962), it is impossible, in general, to have a radial
distribution of stresses in a point force problem. That is, the stresses cannot be aligned in
the radial direction with an epicenter at the point of application of the concentrated force
P. There is but only one radial solution which is related to the particular gradient of the
elastic properties and connects k with the Poisson ratio v. It is useful to briefly examine
here the basic results of this particular case, to set the scene for several key analytical
formulations of the present work.

Consider spherical coordinates (R, <jJ, (J), see Fig. 1, and assume that the radial stress,
aRR, is the only non-zero stress. From equilibrium and radial symmetry,
aaRR/aR +2aRR/R = 0,

(5)

where S(<jJ) is a function of the spherical angle <jJ, as shown in Fig. 1. Note that the form of
eqn (5) is prescribed a priori and it defines the essential radiality of the stresses. Moreover,
aRR, is the only principal stress in this case, and eqn (5) satisfies automatically the stress
free boundary conditions at the surface (<jJ = nI2), ac/>c/> = aRc/> = O. The non-zero strains are:

(6a)

Compatibility (strain-displacement) equations are in this case

where (u R , uc/» are the displacements along Rand <jJ coordinates. Equations (6a) and (6b)
gIve

(7)

where A and B are constants.
For Hook's law to be valid, E = aRRleRR, B = 0, A = ClEo and k = (I/v) -2; thus the

critical Poisson ratio, Vcr = I/(k+2). The problem is completed by stating the angular
distribution of stress,

S(<jJ) = C(COS<jJ)li'-l

where C is a constant, and the displacement fields are:

(8)
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C V
uR = ---RI-1/Vcos<jJ,

Eo v-I
C v2

u¢ = - R 1- 1/v sin<jJ.
Eo v-I

(9)

Global equilibrium connects the constant C with the applied vertical load P at the surface
origin as

rn
/
2

2nC Jo (COS<jJ)I/v+] d<jJ = -P. (10)

As an example, typical of many types of clay and sand, consider the case of E =

Eo.j"";. Then for a Poisson ratio, v = 0.4, the non-zero components of the fields are

-7P
(J = --cos 3/2 <jJ

RR 4nR 2 '

-7P
UA. = sin <jJ,

'I' 15nEoR 3/ 2
(11)

where <jJ = nl2 at the surface and <jJ = 0 along the z-axis.
The present section is closed by recalling the particular case of k = I (Gibson soil,

E = EoZ) and v = 0.5 (incompressibility). Gibson and Kalsi (1974) and Callandine and
Greenwood (1978) proved that a simple radial field exists in this case and that it follows
the distribution of the homogeneous case. In the spherical coordinate system (R, <jJ, (J), it
was found that the non-zero components ofdisplacements, strains and stresses, respectively,
are

-2CEo cos<jJ
(JRR =

R2
(12)

with C = 3PI(4nEo). The displaced volume gives a remarkable relation between indentation
displacement and contact stress, which are simply related with a Winkler type of spring
constant of magnitude 2Eo/3 (Callandine and Greenwood, 1978).

Although the previous results had been known (Holl, 1940; Hruban, 1958), the effect
of the Poisson ratio for value above the critical value, I/(k+ 2), has not been examined thus
far. This effect will be explored in a later section with full field finite element calculations.

3.1.2. The Flamant and Boussinesq problems for the power law case. We develop in this
section general solutions for line and point load problems for the power law case. As shown
earlier, if the Poisson ratio v is not related to the power law exponent k according to
k = IIv - 2(0 ~ k < I), then a simple radial field cannot be constructed for the axisymmetric
Boussinesq problem (point force). However, since the elastic property distribution does not
contain any characteristic length, it is possible to use potential theory to extract closed form
results. We solve first the Flamant problem, i.e., the solution for a vertical line load (plane
strain). The solution to the point load that corresponds to the axisymmetric Boussinesq
problem can be derived from it by recourse to Aleksandrov's theorem which connects the
axisymmetric and plane problems (Aleksandrov, 1961). The approach of Booker et al.
(1985) was to integrate directly the equilibrium equations in spherical coordinates. The
following method utilizes a different approach which involves the equilibrium equations in
cylindrical coordinates and the connection between axisymmetric and plane problems. As
shown later, the present results converge to the solution of Booker et at. in specific cases.

In the governing two dimensional compatibility equations, the stresses are expressed
in terms of the Airy stress function (e.g., Ching-Hua, 1961). Expressing the compatibility
equation in polar coordinates (R, <jJ)t and assuming a state of radial stress, and using

t The present approach with cylindrical coordinates, albeit more cumbersome than with the spherical coor
dinates for the power law case, is much more versatile because of its use for arbitrary variations of elastic moduli
(especially for the cases that contain intrinsic lengths such as the exponential model discussed earlier).
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axisymmetry, the stress solution can be written as

From global equilibrium

C = I 21+kr(3+k+q)r(3+k-q)
nT(2+k) x 2 2'

2363

(13)

(14)

where r( ) is the Gamma function (Magnus and Oberhettinger, 1954) and q is a function
defined as J(I +k)[l-kvj(l-v)]. The normal strain in terms of the Airy function is

OW I ( 0
2

F )G =-=- --+(I+v)AF
zz oz J1. OZ2 '

(15)

where x = R sin cj>, z = Rcoscj>, A = 02jor+02joz2. Integrating Gzz for the vertical dis
placement w at the surface, leads to

(I - v2)qCP -k' nq
w(x,z = 0) = Eo(l+k)k Ixl sm2 . (16)

If P = I, the above form serves as the kernel for the 2-D contact problems.
Returning to the Boussinesq problem, and using the Aleksandrov (1961) theorem, the

surface displacement is written as

-PfOC! 0 dx
w(r,z = 0) = - ~(w(x,z = 0)) ~.

n r uX yx2 _r2
(17)

Rearranging the terms and using the integral properties of Gamma functions, the vertical
surface displacement for a point force of a power law elastic modulus distribution is

w(r, z = 0) = (1- v
2
) CqP sin(nqj2) r(lj2 +kj2) .

2Eo (I+k)rl+k~ r(1+kj2)

In a similar way, the radial surface displacement becomes

(
(I-V2) CPcos(nqj2) r(l +kj2)

u r z = 0) = --'------- -----'------=---'- ------'-----'-----
, Eo krl+k~ r(lj2+kj2) '

(18)

(19)

with C defined in eqn (14).
The above results are the same as those of Booker et al. (1985) and Rostovtsev and

Khranevskaia (1971), where the latter give additionally the stress {1u along the z-axis of the
applied vertical load

(20)
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Table I. Theoretical values of M for different v and k values and M values
derived from finite element simulations

k q* Mt Mt

1/3 1/8 1.026980 1.063809 1.06
1/3 1/2 1.060670 1.215811 1.19
1/3 7/8 1.026980 1.308136 1.24

1/4 1/8 1.037821 1.030632 1.04
1/4 1/2 1.118034 1.349478 1.37
1/4 7/8 1.153698 1.452385 1.49

* q = J {(I +k)[I -kvj(l- v)]).
t Equation (21).
t Finite element results.

where

(k+3)(k+2)[ 1 ( 7+k-q

DM = 6 (5+k-q)(3+k-q) F 2,k+4; 2

+ (5+k+q)I(3+k+q) F(2,k+4;
7+k+q

DJ (21)
2

and F is the Gauss hypergeometric function. The theoretically predicted values of Mare
compared in Table 1 with our computational results.

Along the surface (z = 0), all stresses are zero. It can be further shown that along the
z-axis, (J" and (Jee are principal stresses and

I - pc( k 1 ) f' x
2

cos(q atan(xlz»(J" ,=0 - - z ( +v dx
o (x2 +Z2)(k+3)13 Jr2 _x2

k+ 2 f' cos(q atan(xjz» d)1+z v x .
o (x2+z2)(k+3l/3Jr2_x2 HO

(22a)

(22b)

Denoting by (R, ¢) the polar coordinates in the (r, z) plane, the stresses can be generally
expressed as

(23)

where Sij (i,j = R, ¢, 8) depend on k and v and can be given analytically in the most general
case only for v = Ij(k+2) (see previous section). Booker et al. (1985) solved numerically
the case ofv = 0.25 and 0::::; k::::; 1.

Some general analytic results can be further deduced from the equilibrium equation
along the z-axis:

(24)

The separation of variables in the form of eqn (23), implies that (Jee = 0 is a straight line
starting from the origin. (Jee is a principal stress, and using the 3-D Mohr's circles, it can be
shown that the location of the line of (Jee = 0 coincides with the line of maximum shear
stress (1,z.

Clearly, the stresses do not depend on Eo, are proportional to the applied load, P, and
decay to zero as Z-2 with depth (z ~ 00), as expected. The previous results converge to the
classic Boussinesq (1885) solution for the homogeneous case when k = 0 (Appendix 1 gives
a short summary for comparison).
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3.2. The case ofexponential variation in modulus: E = Eoe"'

3.2.1. The general axisymmetric problem for the exponential law case. In this section
we develop solutions for the constant pressure and the point load problem assuming the
exponential variation of modulus. We begin by examining the equilibrium eqns (1).
Assuming sufficient continuity for the displacements, borrowing from the homogeneous
analysis of axisymmetric problems (Love 1927), we take an auxiliary function, K(r, z),
related to the radial displacement u as

(25)

Inserting eqn (25) into the equilibrium eqns (1), and after eliminating the vertical dis
placement w, a partial differential equation is obtained with regard to the auxiliary function
K,

where A is the Laplace operator for the axisymmetric problems and

a2 v a2

a=-- b=--
I-v' I-v'

(26)

(27)

Note that for the homogeneous case, a = 0, we have a = 0 and b = 0, and the above
equation reduces to Love's biharmonic function (Love, 1927). For the case of a =I 0,
separation of the rand z variables in the form of Laplace transform, gives a set of two
Bessel ordinary differential equations which give the solution in terms ofthe Bessel functions
of zeroth, Jo, and first order, J1• The appearance of the radial dimension in terms of Bessel
functions was expected on the basis of the axisymmetric formulation of the problem.
Keeping the arguments real, a solution for the auxiliary function that is relevant to the
semi-infinite body (z ~ 0) reads as

K(r, z) = re'Z[FJ (t) cos(pz) +F2(t) sin(pz)]Jo(qr) dt, (28)

where F I (t) and F2( t) are arbitrary functions to be determined from the boundary conditions
at z = O. The parameters q, p are related to the transformation parameter t as

at(t+a)

a+(2t+a)2
(29)

and taking ta > 0 (t > 0, if a > 0; t < 0, if a < 0).
The displacements take the form (z ~ 0)

w(r, z) = 1~ eIZ(\}Ij (r, t) cos(pz) +\}I 2 (t) sin(pz))Jo(qr) dt,

(30)

(31)
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where

'1'[ (r, t) = I
(32a)[w$[ (r, t) +p$z (r, t)],

pZ+wz

I
(32b)'I'z(r, t) = [W$z (r, t) +p$[ (r, t)],

pZ+wz

$[ (r, t) = [qZ F] (t) - (1- 2v)~qFz(t)]Jo(qr), (33a)

$z (r, t) = [qZ Fz(t) +(1- 2v)~qF](t)]Jo(qr) (33b)

and

W = t+oc(1-2v). (34)

Using the expressions for the displacements, the stresses can be expressed in an integral
form. The results are not presented here because of space restrictions.

The functions F1(t) and Fz(t) are determined from the boundary conditions at the
surface (z = 0). Concentrating on the boundary conditions, let the contact pressure be
denoted by

O"zzlz=o = -g(rjR), (35)

for 0 ~ r ~ R (R is the contact radius), O"zz = 0 outside the contact circle and g(rjR) ~ O.
In absence of shear surface tractions,

(36)

for 0 ~ r < 00. For v'" 0, a general solution can be found by noting that the shear traction
at the surface becomes zero when

with

Fz(t) = - P(t)F1(t), (37)

(38)

Recalling the Fourier-Bessel integral properties (in essence inverting Hankel trans
forms of order zero), F] is recovered from the normal stress at the surface:

where

(1-2v)I Q(t)
F] (t) = - 2J1. qs(qR)S(t) - P(t) T(t) ,

CqR
s(qR) = Jo (qs)g(sjR)Jo(qs) d(qs),

(39)

(40)

(41)



Indentations of solids-I 2367

1
Set) = [-vq2(p2+w2)+(1-v)(1-2v)tpq~

p2+ W 2

+(1-V)tq2W + (1-V)q2p2+ (1-v)(1-2v)pq~w], (42)

1
T(t) = [2q2pt(1-v)-qt~w(1-v)(1-2v)

p2+ W 2

+(1- v)(1- 2V)q2plX - (1- v)(1-2V)qp2~]. (43)

For a unit load, 9 = 1, s(qR) = qRJ[(qR) and the solution becomes

(1- 2v) Q(t)
F] (t) = - 2J1. RJ] (qR) Set) - p(t) T(t) (44)

3.2.2. The special case of v = 0 for the exponential law case. For the particular case of
v = 0, a simpler analytic solution can be derived which can be very illuminating for sub
sequent discussions on the influence of material length in graded materials. In this case the
parameters of the previous section simplify as

a = 0, p = 0, q = jt(t+IX), W = t+lX.

The displacements and stresses reduce to (z ~ 0)

(45)

( ) E lalz roo IZJ ( ) 2F ( ) d () _ E I-Iz roo IZ 2 dJ, (qr) F ( ) d
(1zz r, z = Oe Jo e 0 qr t [t t, (1rr r, Z - - Oe ~ Jo e q d(qr) Itt,

(47)

(48)

The point force, P, applied at the surface origin (r = 0, Z = 0) and directed in the z
axis (normal to the surface) can be solved exactly. The solution can be constructed using a
limiting procedure from the uniform surface load to the concentrated load P. Changing the
coordinate of the integration, the Boussinesq's problem for a point force, P, can be stated
as

P 100

w(r) = -E G(qjlX)Jo(rq) dq
1C 0 0

for the surface displacement, where

G(qjlX) = (2qjlX)j (2qjlX)
2 + 1 .

(1 +j(2qjlX)2 + 1)2

(49)

(50)

The vertical stress, (1m the radial, (1", and the hoop stress, (188, along the z-axis (r = 0)
are principal stresses. It can be easily shown that
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P ice__ 1>lz tz
lTzzlr=o - 2n e 0 e qQdt, P iOO

2_ 1>lz tz q
lTrrlr~O - 4-e e -Qdt,

n 0 t 2
(51)

(52)

Some general analytic results can be further deduced from the equilibrium equation
along the z-axis:

(53)

Note that lToo is a principal stress and that using the 3-D Mohr's circles, the location of the
line of (foo = 0 can be shown to coincide with the line of maximum shear stress lTrz . For
a < 0, the stresses are proportional to the applied force, P, decay exponentially to zero for
z -+ - 00, and do not depend on Eo, as expected. Along the z-axis, the vertical stress is the
only compressive one, with the circumferential and radial stresses being tensile, as is the
case for the homogeneous case. The coordinates scale with the absolute value of the
characteristic length l/ial. Therefore, the Poisson ratio, v, completely determines the stress
field for a unit load, P = 1. The situation is more complicated for a > °and it appears that
the stresses vary as Z-2 with depth, a situation comparable to the power law case.

In the most general case, the influence function, G, is given in Appendix 2. In the
homogeneous limit, a -+ 0, the results reduce exactly to the Boussinesq solution given in
Appendix 1.

4. FINITE ELEMENT ANALYSIS

4.1. Numerical formulation
An axisymmetric mesh was constructed, as shown in Fig. 3. Four-noded, axisymmetric

elements were used, with progressively varying element size. The final mesh had 4747
elements and 5058 nodes. Full integration scheme was used. No special types of elements
were used, either close to the point force (so-called "singular elements") or at infinity (so
called "infinite elements"). The reason was that the solutions were sought with the simplest
numerical scheme and for uniform treatment of the subsequent analysis of the various
indenters (punch, cone and sphere). It is thus recognized that at distances very close and
very far from the point force the solution is not accurate and only in-between the point of
application of the force and the outer boundary is sufficient accuracy expected. The mesh
was gradually refined to yield results in stresses that converged within less than 5% error
when compared with all available analytic results, at distances more than three elements
around the point of application of the force, P (see Table 1). The element size close to the
origin (force point) was 1/840 to 1/1680 of the outer boundary total dimensions. The outer
boundary was modeled with stress free conditions on the right side (side CD) and vertically
constrained at the lower side (side AB in Fig. 3). In this way, it was possible to obtain a
fine resolution of the fields, while simultaneously minimizing the modeling errors (since the
far field boundary conditions were unknown, the specific finite element formulation can
introduce boundary conditions which will influence the solution, if the mesh is small and
inadequately designed with respect to the element distribution).

A numerical subroutine pertinent for the description of the inhomogeneity in the elastic
and plastic properties at the element level was adopted (for isotropic and orthotropic
mechanical response) (Giannakopoulos et at., 1995), compatible with the ABAQUS (1993)
general purpose finite element program. To the best of our knowledge, it is the first time
that such code is developed and used in indentation problems with material properties that
vary continuously with spatial coordinates. In addition, the code can handle any distribution
of material properties, a fact that makes it extremely versatile. Allowing the material
properties to vary within the individual elements provides enormous flexibility in meshing.

In all cases, a compressive force of magnitude P = 1 N was applied at the coordinate
origin (z = 0, r = 0), which corresponds to a high distribution of pressure within the first
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Fig. 3. (a) The overall view of the mesh used in the present calculations. (b) Details of the mesh
close to the point force.

element at the origin. In line with the analysis, all results scale proportionally to the load
P, a fact that was additionally verified numerically. From the analysis, it is clear that Eo
serves as a simple amplification factor for the strains and displacements, but does not affect
either the distribution or the magnitude of the stress fields. The present computations
confirm this, and a conventional value of Eo = 1011 Pa m- k was used in the presented
results. All lengths are in m and stresses in Pa. The problem is completely characterized by
a fourth order stress vector whose components are presented in the form of two principal
stresses (0'1,0'2) in the (r, z) plane, the circumferential stress, 0'08 (which is also a principal
stress) and the shear stress, 0',= in the (r, z) plane. With this representation it is easy to
transform the stresses to any other system, as well as to compute various types of effective
stresses, such as the Mises and Tresca stresses and the pressure. Some general trends and
comparisons of the results will be shown in Tables 2 and 3.

The successful solution of the present problems sets the stage for the solution of the
actual indentation problems (punch, cone, sphere) to be presented in sequels to this paper
(Giannakopoulos and Suresh, 1997). The present solutions may serve as far-field loads
for elastic and elastoplastic analysis of indentation problems, since those solutions must
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Table 2. A comparison of the indentation response of a homogeneous elastic medium and that of an elastic solid
whose Young's modulus has a power law variation with depth beneath the indented surface

Homogeneous (Eo) Power law (Eoi'; 0 ~ k < I)

v < Vcr =
V < 1/2 V = 1/2 I/(k+2)

Surface deformation More sinking- Less sinking- Less sinking-
[w(r)] in than power in than in than the

law V < 1/2 homogeneous
case

Dominant principal Non-radial Radial Non-radial,
stress (0",) (0"1 = u,,) smaller than

v> I/(k+2)
Secondary principal Tensile Zero Tensile
stress (0"2)
Circumferential stress Tensile along Zero Tensile along
(0"00) z-axis, z-axis,

compressive compressive
along surface along surface

Shear stress (0",,) Rotates Rotates Rotates
towards towards free towards
z-axis surface z-axis

v = Vcr =
I/(k+2)

Radial
(0"1 = 0",,)

Zero

Zero

V> Vcr =
I/(k+2)

More sinking
in than
v< I/(k+2)

Non-radial,
larger than
v < I/(k+2)
Compressive

Compressive
along z-axis,
tensile surface

Rotates
towards free
surface

Table 3. A comparison of the indentation response of a homogeneous elastic medium and that of an elastic solid
whose Young's modulus has an exponential law variation with depth beneath the indented surface

Homogeneous (Eo) Exponential (Ee"")

IX=O IX<O IX>O IX>O
o~ v < 1/2 o~ v < 1/2 v=O v = 0.4

Surface deformation More sinking-in Less sinking-in Less sinking-in
[w(r)] than the than the thanv=O

homogeneous case homogeneous case
Dominant principal Focuses in the Spreads more on Focuses in the Similar to IX = 0
stress (UI) interior the surface interior, shows a

clear steepest
decent path

Secondary principal Tensile, shows a Tensile, higher Tensile, lower Mainly
stress (u2) clear steepest values than IX = 0 values than for compressive, local

descent IX < 0, similar maximum
shapes to IX = 0 compression

below the surface
Circumferential stress Tensile along Tensile along Higher values Alternating tensile
(0"00) z-axis, compressive z-axis, than IX = 0, but and compressive

along surface, zero compressive along lower than IX < 0 regions
values on a straight surface, zero
line from the origin values on an

exponential curve
from the origin
that approaches
depth I/IIXI

Shear stress (0",,) Maximum values Maximum values Maximum values Similar to IX = 0
follow the (Joo = 0 follow the (Joo = 0 directed more
line curve toward the

interion than
(;(=0

approach the present ones at distances sufficiently away from the indentation region where
elastic conditions prevail. In this sense, the present results are analogous to the elastic
crack-tip stress fields used extensively in linear and non-linear fracture mechanics. They
can also be used for the creation of "singular" (near the point of the force application), as
well as "infinite" (at the outer boundary), types of finite elements.
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Fig. 4. The stress fields for E = EoZk with k = 0.5 and v = 0.2. (a) (T" the dominant principal stress,
(b) (T2, the secondary principal stress, (c) (Tn", the circumferential stress, and (d) (T,,, the shear stress

(lengths are in m and stresses in Pa). (Continued overleaf)

4.2. The power law case: E = Eozk

For convenience in describing the stresses around the point force, we introduce the in
plane polar coordinates, R, 1>, as indicated in Fig. 1 (R2 = r2+z2

, tan¢ = rjz). The ¢
variation of the stresses and displacements derived for v = 0.25 and various values of k, as
computed by Booker et al. (1985), were verified.t The stress singularity is R- 2

, the strain
singularity is R-(2+k) and the displacement singularity is R-(l+k). This gives a very good
assessment of our finite element method for the power law material model and sets a good
degree of confidence for the cases that follow.

t Booker et al. (1985), however, by using a Poisson ratio of 0.25 which is always less than the critical value
of I! (k + 2) for 0 ~ k ~ I, did not capture some subtle issues of the stress distributions pertaining to the transition
of the Poisson ratio from v < II (k +2) to v > 1/(k +2). In the present analysis, it was found that the Poisson ratio
has an important influence on the stress distributions; it acts as an internal constraint in relation to the elastic
modulus distribution characterized by the power exponent k.



2372 A. E. Giannakopoulos and S. Suresh

1.0

1.0

O'rz VALUE

-5.62E+00

+5.00£-02

+1.66E~Cl

1.0+2.83£-01

+4.00E-01

+5.16£-01

+6.33E-01

+7.50£-01

+2.30E+02

(d)

Fig. 4-Continued.

Analyses were done for k = 0.00,0.25,0.50, 0.75, 1.00, and for each k value the Poisson
ratio was taken v = 0.2, 1/(k+2), 0.43, 0.45 (that is below, at and above its critical value).
For v = I/(k+ 2), the fields are uniquely presented by the only non-zero principal stress,
CT], and the shear stress, CTrz . Regarding all the other cases, four stresses (CT I , CT2' CT88, CTrz) are
shown in sequence for complete description of the fields, as explained previously. For
brevity, only the cases of k = 0.50 and 0.75 are shown, see Figs 4-9. Once v and k are given,
the results are universal and scale proportionally to the applied force, P.

As general trends, all stresses become zero at the surface, z = 0, as expected from the
constitutive assumption (£(z = 0) = 0). The shear stress, CTm also becomes zero along the
z-axis, as expected from the axisymmetric deformation. The principal stresses, CT], CT2, are
identical to CTzz and am respectively, along the z-axis. As expected from the theory, CT2 = a88

along the z-axis. In all cases, al is compressive (negative). We will term CT] as the dominant
principal stress and CT2 as the secondary principal stress, since in absolute magnitudes
lad:::::: 6/(1- 2v)ICT21· The absolute value of the dominant principal stress, ICTd, increases by
about 33% as k increases from k = 0 to I, and decreases with increasing v. The absolute
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Fig. 5. The stress fields for E = Eoi' with k = 0.5 and v = 0.4. (a) O"b and (b) 0",,, shear stress (lengths
are in m and stresses in Pa).

value of the secondary principal stress 10"21 decreases with k by about 4-fold as k increases
from k = 0 to k = 1.

Perhaps the most dramatic effect is the change of sign of 0"2 and 0"88 as the Poisson ratio
v increases past the critical value 1j(k+ 2). Table 2 summarizes the key trends corresponding
to this variation, and compares the indentation response of the graded elastic medium with
that of a medium with homogeneous elastic properties.

For v < Ij(k+2), 0"80 changes sign from positive values along the z-axis to negative
values close to the free surface. The maximum positive value of the circumferential stress,
0"00, appears along the z-axis and the maximum negative values appear at ¢ ~ 65' for k = 0,
increasing to ¢ ~ 85' for k = O. For v> Ij(k+2). (J01i changes sign from negative values
along the z-axis to positive values close to the free surface and becomes zero along a line
¢ ~ 45° (decreases from around ¢ ~ 52.5' at k = 0, to ¢ ~ 39 at k = 1). The maximum
negative value of (J1l1i appears along the z-axis and the maximum positive values appear at
¢ ~ 65 c for k = 0, increasing to ¢ ~ 85 for k = I. This effect is very important in the
context of damage evolution in brittle materials and it indicates that damage may relocate
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from being localized beneath the surface to being spread closer to the surface, as the Poisson
ratio increases.

The secondary (smaller in absolute magnitude) principal stress, (J2' changes sign and
varies from being positive (tensile) at v < 1/(k+2), to negative (compressive) at
v> 1/(k+2), and it vanishes at v = I/(k+2). This is of importance for the development of
Herzian cone, Palmqvist and lateral cracks at spherical or sharp indentors. A Poisson ratio
above the critical value of l/(k + 2) may essentially eliminate the deleterious effects of the
Hertzian cone type of crack because of the absence of tensile principal stress.

The shear stress field rotates towards the free surface with increasing v. The angle of
maximum shear decreases from around </> :::::: 52.5° at k = 0, to </> :::::: 39° at k = 1. The same
dependence also holds for the (Joo = 0 contour. Thus, in good accord with the theory, the
location of the ([88 = 0 contour coincides with the contour of maximum shear stress (Jrz'

In all cases, the dominant principal stress, (Jj, is far larger than the other principal
stresses, hence it can with very good accuracy represent the Mises effective stress, or three
times the hydrostatic pressure.

4.3. The exponential law case: E = Eoeaz

First, we examine the case of IX < O. The stresses for a typical case of IX = - 1 and
v = 0.2 are shown in Fig. 10. The Poisson ratio does not markedly influence the stress fields.
We note that the coordinates scale inversely with IIXI, which indicates that the problem is
completely defined by v. As z -+ + 00, the stresses approach a biaxial state of compression
along the z-axis and tension along the r-axis. The magnitude of the stresses decay expo
nentially, as predicted by the theory. The secondary principal stress, (J2' is always tensile.
The maximum shear stress, (Jm follows an exponential curve, as it also decays exponentially
with depth, according to z :::::: I/IIXI-O.084ecxz

• The same line is also the contour for the zero
circumferential stress (([88 = 0), as expected from the theory. Regarding (J88, it changes sign
from tensile (positive) along the z-axis to compressive (negative) close to the surface, as it
crosses the zero-value line, z:::::: I/jlXj-0.084eaz

• Clearly, much more volume of the material
experiences tensile stresses than the homogeneous case. Both (J88 and (Jrz "sense" the
existence of the characteristic length, l/llXl, of the problem.

Next, we examine the case of IX > O. The stresses for a typical case of IX = 1 and v = 0.0,
0.2,0.4 are shown in Figs 11, 12 and 13, respectively. The Poisson ratio strongly influences
the stress fields and, in particular, ([2 and (J88' The shear stress is directed towards the bulk
of the material and remains relatively invariant with IX and v. At low values of v (v -+ 0),
the dominant principal stress, (Jj, is compressive, focuses in the interior. The secondary
principal stress, (J2' is tensile with values lower than those for IX < O. The circumferential
stress, (J88, is higher than that of the homogeneous case but lower than the IX < 0 case. The
shear stress, (Jm focuses more to the interior than the homogeneous case. At high values of
v (v -+ 0.5), the dominant principal stress, (Jj, is compressive and resembles that of the
homogeneous case. The secondary principal stress, (J2' is mainly compressive (a maximum
compression appears below the surface at a distance of about 2/(31X)) with a tensile region
close to the point force. Table 3 contains the comparisons of the exponential model for
IX < 0, IX > 0 and IX = 0 (homogeneous case). As in the power law case, the dominant
principal stress, (Jil is far larger that all other principal stresses, hence it can with very good
accuracy represent the Mises effective stress, or three times the hydrostatic pressure.

5. CONCLUSIONS

The present work provides the solutions for the case of a point force compressing
normally the surface ofan elastic half-space wherein the elastic properties vary with distance
normal to the indented surface. Two basic variations of the elastic modulus with depth
were examined: the power law (E = Eo/<) and the exponential law (E = EoeCXZ

). These
models capture the elastic behavior of many geomechanical deposits, as well as of graded
structural materials. Analysis and finite elements were used to capture the solution at the
surface and in the interior of the half-space. The theory is based on elasticity methods for
axisymmetric equilibrium problems and is aimed at obtaining such results as surface
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are in m and stresses in Pal. (Continued opposite.)
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Fig. 13. The stress fields for E = Eoe" with (1 = 1.0 and v = 0.4 (a) ITI> (b) IT" (c) ITee, (d) IT" (lengths
are in m and stresses in Pal. (Continued opposite.)
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deformation and stresses along the line of the applied force. An inhomogeneous-type finite
element was developed to capture the continuously (or discontinuously) varying elastic
properties. The complete finite element solution revealed some very interesting features in
the interior of the half-space that arise from the influence of the Poisson ratio and the rate
of change of the elastic modulus.

The influence of the Poisson ratio is strong whenever the elastic modulus is increasing
with depth, and is weak whenever the elastic modulus is decreasing with depth. This
behavior can be related to the competing constraint between the elastic modulus distribution
and the increasing Poisson ratio towards the incompressibility limit (v --+ 0.5).

For the power law model, it was found that there is a critical Poisson ratio
(vcr = 1/(k+2» which signals drastic changes in the stress fields. For v < Vcr> the in-plane
dominant principal tensile stress is compressive and the secondary principal stress is tensile.
The circumferential stress is tensile in a conical region below the point force and compressive
elsewhere. For v = Vcr> there is only one principal (compressive) stress acting in the radial
direction away from the point force. For v> Vcr> both the in-plane principal stresses are
compressive. The circumferential stress is compressive in a conical region below the point
force and tensile elsewhere. As a result, possible macro- and micro-cracking patterns are
expected to be strongly affected by the Poisson ratio, as our punch solutions have indicated
(Giannakopoulos and Suresh, 1997). Commencement of plasticity in metal matrix
composites, water saturation in soils, and moisture absorption in plastic materials are all
factors which additionally influence indentation results, increasing the effective Poisson
ratio towards incompressibility; consequently, the solutions for v > Vcr become more
relevant.

Regarding the change of the elastic modulus, it was found that a decreasing elastic
modulus with depth results in the spreading of stresses towards the surface rather than to
the interior, whereas an increasing elastic modulus results in diffusing the stresses towards
the interior of the half-space. In all cases the load diffusion is far smoother for the graded
material than for sharp layered cases (e.g., films on substrate), thus avoiding severe stress
jumps that may promote delaminations or other forms of damage. On the other hand, a
decreasing elastic modulus with depth results in a large surface deformation which is less
localized than the surface deformation for increasing elastic modulus. The above results
are of importance in indentation and penetration analysis, and for surface engineering with
coatings for structural components. They show that graded materials can be tailored (in
this case, by appropriately modifying the variation of elastic properties with depth) to meet
specific requirements of tribological, penetration and foundation problems in mechanical
and civil engineering. The present results also provide the basic formulations upon which
our subsequent analyses of the punch, spherical and conical indentation problems for
graded materials are predicted (Giannakopoulos and Suresh, 1997).
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APPENDIX I: THE BOUSSINESQ SOLUTION

Bousinesq (1885) found the solution for a point force of magnitude P directed in a homogeneous, elastic,
isotropic half space, z ~ 0, under small strain formulation. Taking a cylindrical coordinate system (r, z, I.J) at the
point of the applied force, the non-zero stresses are

3P z'
(J = ---

" 2IT R'

for the vertical stress (R' = z' + r'),

P(3zr1
I - 2v )

(J" = - 2IT 1V - R(R+z)
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for the radial stress,

for the circumferential stress and

for the shear stress.
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P(I-2V)( I Z)
(J - ---- --~--

&0 - 2n R(R+z) RJ

3P z'r
(J =--

'c 2n R 5

APPENDIX 2: THE GENERAL SOLUTION OF THE SURFACE DISPLACEMENT IN THE
EXPONENTIAL MODEL

The influence function for the exponential model is given by the surface displacement of a point load P

I l~ 91w(r) = -4E q-Jo(qr) dq
nm 0 0 9,

where Jo is the Bessel function of the first kind, of zeroth order,

I v, n
m = 2(1 +v)' n = (I +v)(I-2v)' r = 2m+n

a; = ~(J (a' +4q')' + (4IXyq) , + (IX' +4q'))

b~ = l(v! (1X2+4q2)' + (4IXyq) , - (IX' +4q'))

91 = 2(1- v)(aq +1X/2)q' - (1- v)(1 - 2v)lXq' + (1- 2v)vlX«aq + 1X/2)2 + b~)

92 = v(I- v)«aq +1X/2)2 +b~)2 + «(1- v)' (3(aq + 1X/2)2 - b~) + (2 - v)v«aq + 1X/2)' +b;)

- 2(1- v)lX(aq +1X/2))q2 - (1- v)(2 - V)q4


